
# ROPME MUSSEL WATCH PROGRAMME 2014



**Technical Report: No. 5** 

## REGIONAL DISTRIBUTION OF BIOTOXINS IN ROCK AND PEARL OYSTERS

Prepared by:

**MESL/IAEA** Monaco, December 2015

For:



REGIONAL ORGANIZATION FOR THE PROTECTION OF THE MARINE ENVIRONMENT

ROPME/GC-16/3



**REGIONAL ORGANIZATION FOR THE PROTECTION OF THE MARINE ENVIRONMENT** 

# **ROPME MUSSEL WATCH PROGRAMME 2014**

**Technical Report: No. 5** 

# **Regional Distribution of Biotoxins in**

# **Rock and Pearl Oysters**

Prepared by:

## **MESL/IAEA**

Monaco, December 2015

The Regional Organization for the Protection of the Marine Environment (ROPME) P.O. Box 26388 13124 Safat Kuwait

#### Copyright

All rights reserved. No part of this report may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of ROPME.

### **TABLE OF CONTENTS**

| 1. | Introduction           | 9  |
|----|------------------------|----|
| 2. | Sampling methodology   | 9  |
| 3. | Analytical procedures  | 12 |
| 4. | Results and discussion | 13 |
| 5. | Conclusion             | 16 |
| 6. | Recommendation         | 16 |
| 7. | Acknowledgements       | 17 |
| 8. | References             | 17 |

## LIST OF TABLES

| Table 1. | Biota sampling sites                          | 11 |
|----------|-----------------------------------------------|----|
| Table 2. | Saxitoxines and brevotoxins in oyster samples | 14 |

## LIST OF FIGURES

| Figure 1. | Map of sampling station (by code number)      | 10 |
|-----------|-----------------------------------------------|----|
| Figure 2. | Map of sampling station (by name of location) | 10 |
| Figure 3. | Photos of the samples from each country       | 12 |

#### **1. INTRODUCTION**

Under the ROPME Mussel Watch Programme 2014, a survey was undertaken in February-July 2014 to screen for a series of natural and anthropogenic contaminants in oyster samples collected in key coastal areas of Bahrain, I.R. Iran, Iraq, Oman, Saudi Arabia and the United Arab Emirates (UAE). This report summarizes the results of the analysis of the natural biotoxins saxitoxins and brevetoxins associated to harmful algal blooms.

#### 2. SAMPLING METHODOLOGY

Oyster samples from selected locations along the coast of Kingdom of Bahrain (K.Bh), Islamic Republic of Iran (I.R. Iran), Iraq, Sultanate of Oman (Oman), Kingdom of Saudi Arabia (KSA) and the United Arab Emirates (UAE) were collected in February - July 2014, as part of the ROPME Mussel Watch Programme. The sampling stations, locations and types of samples collected are given on the Figures 1 and 2 and in Table 1.

Oyster samples were freeze dried and consisted of 7 Pearl Oysters samples, identified as *Pinctada radiate* and 16 Rock Oyster samples identified as *Saccostrea cucullata*. The number of individual oyster in each sample was only specified for UAE (n=20 per site).

No information was available on the sample composition (whole or part of the organisms) and wet weigh. Overall the dried Pearl and Rocky oyster samples received were clear and homogenous except that from Oman which appeared burnt during drying process (See Figure 3). No information was provided on the presence or absence of concurrent harmful algal bloom during the sampling period.

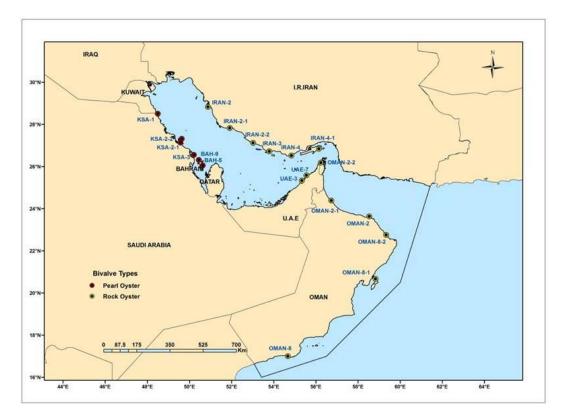



Figure 1. Map of sampling station (by code number)

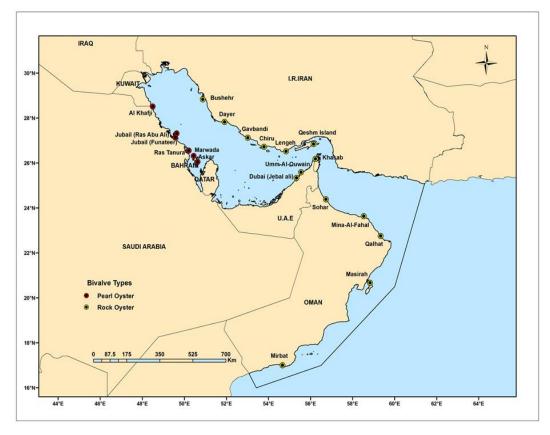



Figure 2. Map of sampling station (by name of location)

 Table 1. Biota sampling sites

| Country   | Date       | Site Name              | Code           | Stat | Latitude | Longitude |              | Remarks                               |
|-----------|------------|------------------------|----------------|------|----------|-----------|--------------|---------------------------------------|
| K.Bh      | 2014-02-18 | Askar *                | Bah-5          | 1    | 26°3' N  | 50°37' E  | Pearl Oyster |                                       |
|           | 2014-02-17 | Marwada                | Bah-9          | 1    | 26°18' N | 51°26' E  | Pearl Oyster |                                       |
| I.R.Iran  | 2014-02-17 | Bushehr *              | IRAN-2         | 1    | 28°49' N | 50°52' E  | Rock Oyster  |                                       |
|           | 2014-02-19 | Dayer                  | IRAN-2-1       | 1    | 27°49' N | 51°54' E  | Rock Oyster  |                                       |
|           | 2014-02-20 | Gavbandi               | IRAN-2-2       | 1    | 27°7' N  | 53°1' E   | Rock Oyster  |                                       |
|           | 2014-02-21 | Chiru (new site)       |                | 1    | 26°43' N | 53°47' E  | Rock Oyster  |                                       |
|           | 2014-02-22 | Lengeh *               | IRAN-4         | 1    | 26°31' N | 54°50' E  | Rock Oyster  |                                       |
|           | 2014-02-24 | Qeshm Island           | IRAN-4-1       | 1    | 26°50' N | 56°8' E   | Rock Oyster  |                                       |
| Iraq      | ?/07/2014  | Shat Al Arab           |                | 1    |          |           | Pearl Oyster | 10 Km offshore                        |
| OMAN      | 2014-04-01 | Mirbat *               | OMAN-8         | 1    | 17°0' N  | 54°40' E  | Rock Oyster  |                                       |
|           | 2014-03-14 | Masirah                | OMAN-8-1       | 1    | 20°40' N | 58°50' E  | Rock Oyster  |                                       |
|           | 2014-02-08 | Qalhat                 | OMAN-8-2       | 1    | 22°45' N | 59°20' E  | Rock Oyster  |                                       |
|           | 2014-02-06 | Mina Al <u>Fahal</u> * | OMAN-2         | 1    | 23°37' N | 58°31' E  | Rock Oyster  |                                       |
|           | 2014-02-10 | Sohar                  | OMAN-2-1       | 1    | 24°23' N | 56°44' E  | Rock Oyster  |                                       |
|           | 2014-04-08 | Khasab                 | OMAN-2-2       | 1    | 26°11' N | 56°14' E  | Rock Oyster  |                                       |
| KSA       | 2014-03-06 | Ras Tanura *           | KSA-3          | 1    | 26°33' N | 50°12' E  | Pearl Oyster |                                       |
|           | 2014-03-08 | Jubail                 | KSA-2-1        | 1    | 27°8' N  | 49°34' E  | Pearl Oyster | pleasance <u>harbour</u> (Fanateer)   |
|           | 2014-03-09 | KSA-2                  | KSA-2-2        | 2    | 27°18' N | 49°38' E  | Pearl Oyster | 30 km N. Jubail ( <u>Ras abu</u> Ali) |
|           | 2014-03-09 | Al <u>Khafji</u>       | KSA-1          | 1    | 28°30' N | 48°29' E  | Pearl Oyster | little No. of oysters                 |
| UAE       | 2014-02-13 | Umm Al-Quwain *        | UAE-7-1        | 1    | 25°35' N | 55°33' E  | RockOyster   |                                       |
| 10.409886 |            | UAE-7                  | <b>UAE-7-1</b> | 2    |          |           | Rock Oyster  |                                       |
|           |            |                        | UAE-7-1        | 3    |          |           | Rock Oyster  |                                       |
|           |            |                        | <b>UAE-7-2</b> | 1    |          |           | Pearl Oyster | 50 m offshore of R. Oyster stations   |
|           |            |                        | <b>UAE-7-2</b> | 2    |          |           | Pearl Oyster |                                       |
|           |            |                        | UAE-7-2        | 3    |          |           | Pearl Oyster |                                       |
|           | 2014-02-18 | Dubai (Jebal Ali)      | UAE-3          | 1    | 25°20' N | 55°20' E  | Rock Oyster  |                                       |

\*Location sampled during the ROPME Contaminant Screening Programme (1994-2005) and Mussel Watch Programme 2011





Figure 3. Photos of the samples from each country

#### 3. ANALYTICAL PROCEDURES

The analytical protocols for determination of biotoxins in biota samples are presented in this section.

#### Sample extraction

Dried samples were first rehydrated using an estimation of 80% water content as per value found in the literature (the actual initial fresh weight not being provided). Aliquot of 0.5g of dried shellfish were hence prepared by adding 2g of water to approximate a fresh shellfish tissue weigh of 2.5g.

#### Brevetoxin and saxitoxin extraction.

For brevetoxin analysis hydrated samples were extracted with acetone (1:3 w:v) using a probe sonicator. Samples were then centrifuged and the supernatant collected. This step was repeated once and both supernatants were pooled and dried. The dry extract was then portioned twice in methanol 80% and hexane to remove the lipids. The methanol fraction was dried and resuspended in 100% methanol for toxin analysis.

For saxitoxin analysis, hydrated samples were extracted with 0.1N HCl in a boiling water bath for 5min. The mixture was then centrifuged at 3,000 rpm for 10 min and the supernatant filtered through 0.45  $\mu$ m nylon filters before toxin analysis.

Toxin analysis

• Saxitoxin analysis with the AOAC Official Method of Analysis (OMA 2011.27) Receptor Binding Assay (Van Dolah *et al.* 2012, IAEA-TEC-DOC-1729)

All filtered extracts were analyzed by receptor binding assay (RBA) using a tritiated dihydrochloride-saxitoxin (from Quotient bioresearch, UK), and quantified by comparison to certified reference solutions of saxitoxin (STX) purchased from National Research Council Canada. Toxicity is therefore reported in saxitoxin equivalents (STX eq.) for sample above the limit of quantification. Brevetoxin analysis by radioligand-receptor binding assay (IAEA TEC-DOC-1729).

Methanol extracts were analyzed by receptor binding assay (RBA) using a tritiated PbTx-3 (from ARC, USA) and quantified by comparison to commercially available standard brevetoxin PbTx-3. Toxicity is therefore reported in PbTx-3 equivalents (PbTx-3 eq.) for sample above the limit of quantification.

#### 4. **RESULTS AND DISCUSSION**

Results of RBA analyses are given in Table 2. Brevetoxins were below the level of detection in all samples. Saxitoxins were below the detection level in 22 samples and quantifiable in 4 samples. Tissue concentrations ranging from 7.63  $\mu$ g STX eq./100g, and 13.3  $\mu$ g STX eq./100g were measured in Pearl oysters from Saudi Arabia and Iraq and Rock Oyster from I.R. Iran (Table 2).

| No. of            | Country   | Dete       |                               | Site Name |         | Bivalve<br>type | Total STX<br>Equiv.<br>μg/100g              | Brevetoxins<br>votoxinsBre<br>ua/100a |
|-------------------|-----------|------------|-------------------------------|-----------|---------|-----------------|---------------------------------------------|---------------------------------------|
| sampling<br>sites | Country   | Date       | Name                          | Code      | Station |                 |                                             |                                       |
| 2                 | K.Bh      | 2014-02-18 | Askar *                       | Bah-5     | 1       | Pearl Oyster    | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                     |
|                   |           | 2014-02-17 | Marwada                       | Bah-9     | 1       | Pearl Oyster    | n/a                                         | n/a                                   |
|                   |           |            |                               |           |         |                 |                                             |                                       |
|                   | I.R. Iran | 2014-02-17 | Bushehr *                     | IRAN-2    | 1       | Rock Oyster     | 13.63                                       | <dl< td=""></dl<>                     |
|                   |           | 2014-02-19 | Dayer                         | IRAN-2-1  | 1       | Rock Oyster     | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                     |
| 6                 |           | 2014-02-20 | Gavbandi                      | IRAN-2-2  | 1       | Rock oyster     | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                     |
|                   |           | 2014-02-21 | Chiru (new site)              |           | 1       | Rock Oyster     | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                     |
|                   |           | 2014-02-22 | Lengeh *                      | IRAN-4    | 1       | Rock Oyster     | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                     |
|                   |           | 2014-02-24 | Qeshm Island                  | IRAN-4-1  | 1       | Rock oyster     | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                     |
|                   |           |            |                               |           |         |                 |                                             |                                       |
| 1                 | Iraq      | ?/07/2014  | 10 Km offshore Shat Al Arab 1 |           |         | Pearl oyster    | 7.63                                        | <dl< td=""></dl<>                     |

**Table 2.** Saxitoxines and brevotoxins in oyster samples

| <dl< th=""><th></th></dl<>                  |                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <01                                         | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                           |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.67                                        | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| 13.3                                        | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                           |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td>?</td></dl<>                 | ?                                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td>?</td></dl<>                 | ?                                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
| <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<>                                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | <dl< td=""> <dl< td=""> <dl< td=""> <dl< td="">         9.67         13.3         <dl< td=""> <dl< td=""></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<> |

**Table 2.** Saxitoxines and brevotoxins in oyster samples (Contd...)

#### 5. CONCLUSION

In the ROPME Sea Area (RSA), attention has been given over the last 2 decades to harmful algal blooms, providing information on phytoplankton species composition, abundance and biomass, in relation to environmental condition such as eutrophication, pollution, climate change etc. (Dorgham, 2013). The number of reports on harmful algal bloom has been increasing, and their impact on drinking water and seafood safety and security and the environment have become more widespread and persistent. Fish and marine mammals mortalities, aquaculture loss, traditional fishery restriction, and closure of desalination plants, have been attributed to a variety of microalgae, harmful through toxin production or by their biomass. This new regional approach attempts, for the first time, to provide toxicity data through an opportunistic collection of shellfish in 26 sites along the coastline of 6 countries of the RSA.

Two relevant neurotoxins were monitored in Rock and Pearl Oysters, the brevetoxins and the saxitoxins, both produced by phytoplankton species reported in the RSA, and responsible of human neurotoxic shellfish poisoning (NSP) and paralytic shellfish poisoning (PSP), respectively.

The levels of brevetoxins were below the detection limit of the RBA in all samples tested, while the levels of saxitoxins were below the detection limit in all but four (4) sites: Bushehr (IRAN 2), IRAQ, Fanateer (KSA 2.1) and Ras Abu Ali (KSA 2.2). The estimated values, ranging from 7.63 to 13.3  $\mu$ g STX eq./100g, were below to the 80  $\mu$ g STX eq./100g regulatory limit applied in most countries (eg. EU or USA) or to the 40  $\mu$ g STX eq./100g value applied in the Philippines. Yet those values remain of concern considering the fact that no concurrent blooms were reported during the sampling period. As well, the absence of brevetoxin does not preclude the possibility of contamination with these toxins during toxic blooms.

#### 6. **RECOMMENDATION**

The results of the present survey revealed low saxitoxin like activity in selected Oysters collected in the framework of the ROPME Mussel Watch 2014 campaign. It is recommended to complement these receptor binding assay results by analyzing the samples using high performance liquid chromatography with fluorescent (HPLC-Fl), an analytical method that would provide PSP toxins profile. Future work could also include systematic shellfish sampling concomitant to relevant harmful algal blooms, as well as toxic phytoplankton cyst bed mapping.

#### 7. ACKNOWLEDGEMENTS

This was a collaborative project between the IAEA and ROPME, financially supported by both organizations. The Agency is grateful for the support provided to its Marine Environment Laboratory by the Government of the Principality of Monaco.

#### 8. **REFERENCES**

- Dorgham, M. (2013). Plankton research in the ROPME Sea Area, Achievements and Gaps, Int. J. Environ. Res., 7(3):767-778.
- Frances M. Van Dolah, Spencer E. Fire, Tod A. Leighfield, Christina M. Mikulski, and Gregory J. Doucette (2012). Determination of Paralytic Shellfish Toxins in Shellfish by Receptor Binding Assay: Collaborative Study: Journal of AOA C International Vol. 95, No. 3.
- IAEA TEC-DOC 1729 Detection of Harmful Algal Toxins Using the Receptor Binding Assay, a manual of methods. Bottein *et al.*



## REGIONAL ORGANIZATION FOR THE PROTECTION OF THE MARINE ENVIRONMENT (ROPME)

P.O.BOX: 26388, SAFAT 13124, KUWAIT Tel: (965)25312140 Fax: (965)25324172 Email : ropme@ropme.org